

Dr Karina Marsden

Project Team

Tilly Edwards

Prof Andy Smith

Karina Marsden – Teaching and Research Lecturer in Soil and Environmental Science, expertise in GHG quantification and mitigation

Tilly Edwards – NERC funded Envision PhD student determining the role of epiphytes in C and N cycling in temperate rainforests

Andy Smith – Professor of Forest Ecology, expertise in forest ecology, biogeochemistry, plant-soil interactions and ecosystem function

Cryptogamic covers

- Diverse assemblages of mosses, lichens, cyanobacteria and algae
- Lack specialised tissues shown in "higher plants"
 - No true vascular system
 - Reproduce via spores
- Cover diverse substrates and surfaces
 - rock, soil, decaying wood, on other plants (= epiphytic)
- Contribute to biogeochemical and hydrological processes

Overarching Aims

- Establish source-sink dynamics of greenhouse gases (CO₂, CH₄ and N₂O) from cryptogamic covers
- Quantify their overall importance in the carbon balance of temperate rainforests

Figure 1: Research Priorities and underlying themes of interest in the Aviva Temperate Rainforest Research Programme.

Understanding the	Understanding the	Understanding the
Baseline	Restoration Process	Restoration Impact
 A: Where will TRF establish effectively both now and over the next century? B: What does the public know about TRF? How do we engage effectively? 	 C: What are the critical factors determining "success"? D: What methods of monitoring should we use? E: How do we embed environmental resilience? F: Do residents and visitor like the new forests? 	 G: What impact are our "new" TRF having on biodiversity and landscape functioning? H: Are our restoring TRF contributing to net zero? I: Does restored TRF offer wider socio- economic benefit? J: How do restored sites contribute to health and wellbeing?

nature

Explore content Y About the journal Y Publish with us Y

nature > articles > article

Article | Open access | Published: 24 July 2024

Global atmospheric methane uptake by upland tree woody surfaces

Vincent Gauci ^I, Sunitha Rao Pangala, Alexander Shenkin, Josep Barba, David Bastviken, Viviane Figueiredo, Carla Gomez, Alex Enrich-Prast, Emma Sayer, Tainá Stauffer, Bertie Welch, Dafydd Elias, Niall McNamara, Myles Allen & Yadvinder Malhi

Nature 631, 796-800 (2024) Cite this article

- Tropical, temperate and boreal forests
- CH₄ uptake via methanotrophy (bacteria on and in tree surfaces)
- Height of tree surface (> 2 m) found to be important

Non-CO₂ greenhouse gases (GHG) and trees?

Non-CO₂ GHG sources and sinks from cryptogams?

Article Open access Published: 16 October 2017

Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees

<u>Katerina Machacova</u> [™], <u>Martin Maier</u>, <u>Katerina Svobodova</u>, <u>Friederike Lang</u> & <u>Otmar Urban</u>

Scientific Reports 7, Article number: 13243 (2017) Cite this article

1714 Accesses Metrics

- Absorbed N₂O by cryptogamic covers may constitute an additional N source
- If consumption > (re)emission then negative fluxes can occur
- N₂O consumption found to increase under wet conditions
- Likely to be N₂O conversion to N₂ by complete denitrifiers but mechanism not been established
- Importance of N₂O and CH₄ uptake in temperate rainforest unknown

Research Questions

- 1. Do cryptogamic covers act as sinks for greenhouse gases in temperate rainforests?
- 2. How do the source-sink dynamics change with contrasting communities and substrates?
- 3. Do the source-sink dynamics change with height above the forest floor?
- 4. Do the source-sink dynamics change temporally (diurnally and seasonally)?
- 5. Do the source-sink dynamics change across temperate rainforest restoration age?
- 6. What is the magnitude of importance of cryptogamic covers in the carbon balance of temperate rainforests?

Study Sites -Chronosequence

Young, medium and old restoration age

- Coed Hendre Ddu
 - Privately owned
 - Cwm Pennant (Garndolbenmaen)
- Gwaith Powdr (Wildlife Trusts; Penrhyndeudraeth)
- Coed Crafnant (Wildlife Trusts; near Harlech)

Gwaith Powdwr

Spatial GHG flux measurements

- Laser-based instruments CO_2 , N_2O and CH_4 to be determined
- Contrasting substrates
 - Rocks
 - Soil
 - Dead wood
 - Tree surfaces
 - Tree bows
- Height above forest floor
- Focus on the "pristine" temperate rainforest (i.e. impact of restoration)

Photo credit: Tilly Edwards

Temporal GHG flux measurements

- Spatial campaign to inform the temporal campaign but likely to focus on tree stems (at contrasting heights)
- All sites to be monitored across four seasons
- Daily and nocturnal flux measurements to be determined
- Metadata will also be collected
- Upscaling of the results to quantify the contribution of cryptogamic covers on the overall C budget of temperate rainforest

Deliverables

Open access datasets of GHG fluxes and controlling variables (e.g. temperature, humidity, PAR)

2 scientific publications one focusing on spatial aspect and one on the temporal aspect

Non-technical summary for stakeholders

Stakeholder workshop and virtual tours of the forests (VR experience and webbrowser based 360-degree imagery)

Summary

- Temperate rainforest restoration is set to expand in the UK
- Detailed understanding of whether restored temperate rainforest is contributing to net zero is required
- Previous studies have demonstrated CH_4 and N_2O uptake on tree surfaces
- Quantifying this in temperate rainforests important for establishing C budgets / C credits

